八年级数学知识点笔记

发布者:青灯问童子 时间:2023-11-20 23:28

关于八年级数学知识点笔记

即使我们的成绩不是很好,但只要有心想要学习,那么我们就应该笨鸟先飞,所谓"勤能补拙“没有人一出生就是天才,他们都是经过秦风的努力,才会成功的,以下是小编为大家带来的关于八年级数学知识点笔记,欢迎参阅呀!

关于八年级数学知识点笔记

第一章分式

1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。

2、分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

第二章反比例函数

反比例函数的表达式、图像、性质。

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

第三章勾股定理

1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。

2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

第四章四边形

1、平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质。

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的.一切性质。

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差。

五大知识点:

1、一元二次方程的定义、一元二次方程的`一般形式、一元二次方程的解的概念及应用

2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)

3、根的判别式

4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)

5、一元二次方程根与系数的关系(韦达定理)

【课本相关知识点】

1、一元二次方程:只含有未知数,并且未和数的是2,这样的整式方程叫做一元二次方程。

2、能使一元二次方程的未知数的值叫做一元二次方程的解(或根)

3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为的形式,这个形式叫做一元二次方程的一般形式。其中ax2是,a是,bx是,b是,c是常数项。

八年级数学下册复习提纲

变量与函数

一、变量与常量

1、变量:在某一变化过程中,可以取不同的数值,级数值发生变化的量,叫做变量。

常量:在某一变化过程中,取值(数值)始终保持不变的量,叫做常量。

2、注意事项:

(1)常量和变量是相对的,在不同的研究过程中有些是可以相互转化的;

(2)离开具体的过程抽象地说一个量是常量还是变量是不允许的;

(3)在各种关于变量、常量的例子中,变量之间有一定的依赖关系。如三角形的面积,当底边一定时,高与面积之间是有关联的,不是各自随意变化。

二、函数概念

1、定义:在某个变化过程中,如果有两个变量x和y,对于x的每一个确定的值,y都有的值与其对应,那么,我们就说y是x的函数,其中x叫做自变量,y叫做因变量。

2、对函数概念的理解,主要抓住三点:

(1)有两个变量;

(2)一个变量的数值随另一个变量的数值的变化而变化;

(3)自变量每确定一个值,因变量就有一个并且只有一个值与其对应。

三、函数的表示法:(1)列表法;(2)图象法;(3)解析法。

四、求函数自变量的取值范围

1.实际问题中的自变量取值范围

按照实际问题是否有意义的要求来求。

2.用数学式子表示的函数的自变量取值范围

例1.求下列函数中自变量x的取值范围

(1)解析式为整式的,x取全体实数;

(2)解析式为分式的,分母必须不等于0式子才有意义;

(3)解析式的是二次根式的被开方数必须是非负数式子才有意义;

(4)解析式是三次方根的,自变量的取值范围是全体实数。

3.函数值:指自变量取一个数值代入解析式求出的数值,称为函数值;实际上就是以前学的求代数式的值。

函数的图象

一、平面直角坐标系

1、定义:平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中水平的数轴叫做横轴(或x轴),取向右为正方向;竖直的数轴叫做纵轴(y轴),取向上为正方向;两轴的交点O叫做原点。在平面内,原点的右边为正,左边为负,原点的上边为正,下边为负。

2、坐标平面内被x轴、y轴分割成四个部分,按照“逆时针方向”分别为第一象限、第二象限、第三象限、第四象限

注意:x轴、y轴原点不属于任何象限。

3、平面直角坐标系中的点分别向x轴、y轴作垂线段,在x轴上垂足所显示的数称为该点的横坐标,在y轴上垂足所显示的数称为该点的纵坐标。点的坐标反映的是一个点在平面内的位置。

写坐标的规则:横坐标在前,纵坐标在后,中间用“,”隔开,全部用小括号括起来。

如P(3,2)横坐标为3,纵坐标为2。

特别注意坐标的顺序不同,表示的就是不同位置的点。

所以点的坐标是一对有顺序的实数,称为有序实数对。

4、平面直角坐标系中的点与有序实数对一一对应。

5、坐标的特征

(1)在第一象限内的点,横坐标是正数,纵坐标是正数;在第二象限内的点,横坐标是负数,纵坐标是正数;

在第三象限内的点,横坐标是负数,纵坐标是负数;在第四象限内的点,横坐标是正数,纵坐标是负数;

(2)x轴上点的纵坐标等于零;y轴上点的横坐标等于零.

6、对称点的坐标特征

(1)关于x轴对称的两点:横坐标相同,纵坐标绝对值相等,符号相反;

(2)关于y轴对称的两点:横坐标绝对值相等,符号相反,纵坐标相同;

(3)关于原点对称的两点:横坐标绝对值相等,符号相反,纵坐标也绝对值相等,符号相反。

(4)第一、三象限角平分线上点:横坐标与纵坐标相同;

(5)第二、四象限角平分线上点:横坐标与纵坐标互为相反数。

7、点到两坐标轴的距离

点A(a,b)到x轴的距离为|b|,点A(a,b)到y轴的距离为|a|。

二、函数的图象

1、意义:对于一个函数,如果把自变量x与函数值y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象。

2、作函数图象的方法:描点法。步骤:(1)列表;(2)描点;(3)连线。

3、一般函数作图象,要求横轴和纵轴上的单位长度一定要一致,按照对应的解析式先计算出一对对应值,就是坐标,然后描点,再连线;画实际问题的图象时,必须先考虑函数自变量的取值范围.有时为了表达的方便,建立直角坐标系时,横轴和纵轴上的单位长度可以不一致。

一次函数

一、一次函数的概念

之所以称为一次函数,是因为它们的关系式是用一次整式表示的。学习此概念要从两个方面来理解。

(1)从其表达式上:

一次函数通常是指形如:y=kx+b(k、b为常数,k≠0)的函数,凡是成这种形式的函数都是一次函数。而当b=0时,即y=kx(k≠0的常数),则称为正比例函数,其中k为比例系数。

(2)从其意义上:

它们表示的是两个变量之间的关系,这种函数关系具有特定的意义,如,如果说两各变量之间具有一次函数关系,我们就可按照概念设出函数关系式,成正比例关系的也同样,如,若s与t成正比例关系,我们便可设s=kt(k≠0,t为自变量)

“正比例函数”与“成正比例”的区别:

正比例函数一定是y=kx这种形式,而成正比例则意义要广泛得多,它反映了两个量之间的固定正比例关系,如a+3与b-2成正比例,则可表示为:a+3=k(b-2)(k≠0)

二、一次函数的图象

正比例函数和一次函数的图象都是一条直线,所以对于其解析式也称为“直线y=kx+b,直线y=kx”。因为一次函数的图象是一条直线,所以在画一次函数的图象时,只要描出两个点,在通过两点作直线即可。

1、画正比例函数y=kx(k≠0的常数)的图象时,只需要这两个特殊点:(0,0)和(1,k)两点;

2、画一次函数y=kx+b(k、b为常数,k≠0)的图象时,只需要找出它与坐标轴的两个交点即可。一次函数与x轴的交点坐标是:(0,b),与y轴的交点坐标是:(-,0)

3、若两个不同的一次函数的一次项的系数相同,则这它们的图象平行。

4、将y=kx的图象沿着沿着轴向上(b>0)或向下(b<0)平移|b|各单位长度即可得到y=kx+b。

5、求两一次函数的交点坐标:联立解两各函数解析式得到的二元一次方程组,求的自变量x的值为交点的横坐标,求出的y的值为交点的纵坐标。

三、一次函数的性质

一次函数的性质是由k来决定的。

1、正比例函数y=kx(k≠0的常数)的性质

(1)当k>0时,图象经过一、三象限,y随x的增大而增大,这时函数图象从左到右上升。

(2)当k<0时,图象经过二、四象限,y随x的增大而减小,这时函数图象从左到右下降。

2、一次函数y=kx+b(k、b为常数,k≠0)的性质

(1)当k>0时,①当b>0时,图象经过一、三、二象限,y随x的增大而增大,这时函数图象从左到右上升。②当b<0时,图象经过一、三、四象限,y随x的增大而增大,这时函数图象从左到右上升。

(2)当k<0时,①当b>0时,图象经过二、四、一象限,y随x的增大而减小,这时函数图象从左到右下降。②当b<0时,图象经过二、四、一象限,y随x的增大而减小,这时函数图象从左到右下降。

四、确定正比例函数好一次函数的解析式

1、意义:

(1)确定一个正比例函数,就是要确定正比例函数y=kx(k≠0的常数)中的常数k;

(2)确定一个一次函数,需要确定一次函数y=kx+b(k、b为常数,k≠0)中常数k和b。

2、待定系数法

(1)先设待求函数关系式(其中含有未知的系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。

(2)用待定系数法求函数关系式的一般方法:①设出含有待定系数的函数关系式;②把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数方程(组);③解方程(组),求出待定系数;④将求得的待定系数的值代回所设的关系式中,从而确定出函数关系式。

五、一次函数(正比例函数)的应用。与方程的应用差不多,注意审题步骤。

反比例函数

一、反比例函数

1、定义:形如y=(k≠0的常数)的函数叫做反比例函数。

2、对于反比例函数:

(1)掌握其形式y=,且k为常数,同时不能为0;等号左边是函数y,右边是一个分式,分子是一个不为0的常数,分母是自变量x,若把反比例函数写成y=kx-1,则x的系数为-1;自变量x的取值范围是x≠0的一切实数,函数y的取值范围也是不为0的一切实数;

(2)将y=转化为xy=k,由此可得反比例函数中的两个变量的积为定值,即某两个变量的积为一定值时,则这两个变量就成反比例关系。

(3)“反比例函数”与“成反比例”之间的区别在于,前者是一种函数关系,而后者是一种比例关系,不一定是反比例函数,如说s与t2成反比例,可设为s=(k≠0的常数),但这显然不是反比例函数。

二、用待定系数法求反比例函数表达式。由于反比例函数y=中只有一个待定系数,因此只需要一组对应值,即可求k的值,从而确定其表达式。

三、反比例函数的图象

1、意义:

(1)名称:双曲线,它有两个分支,分别位于一、三或二、四象限;

(2)这两个分支关于原点成中心对称;

(3)由于反比例函数自变量x≠0,函数y≠0,所以反比例函数的图象与x轴和y轴都没有交点,无限接近坐标轴,永远不能到达坐标轴。

2、画法(描点法):(1)列表。自变量的值应在0的两边取值,各取三各以上,共六对互为相反数的数对,填y值时,只需计算出自变量对应的函数值即可。(2)描点:先画出反比例函数一侧(即一个象限内的分支),在对称地画出另一侧(另一分值);(3)连线:按照从左到右的顺序用平滑曲线连接各点并延伸,注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不能与坐标轴相交。

怎样快速提高数学成绩?

一、查缺补漏,主攻薄弱

请制作“失分分析表”,包括“不会做的”和“不该丢分的”两部分,分析模拟考试等试卷失分情况,在紧跟老师复习的基础上,针对自己的薄弱环节重点弥补、改进。

别一味冲刺难题。做题是对理论知识的进一步巩固与实检,我们要在理解的基础上加强练习,以达到巩固的目的,但不能一味追求难题偏题。

因为中考试卷中有30%是比较灵活的题型,只有10%是真正的难题。30%那部分题目是我们能拿但容易失分的题目,我们要做到尽量多拿分,但如果我们一味求难求险,就会因为忽视基础题型的夯实和巩固而失掉这部分该得的分。在基础掌握后,有条件的同学可再进行一些难题怪题的攻关,这样的策略才更能保证效率。

二、反思错题

不要盲目找题做,陷入题海中,不要“就题论题”停留在“这题我会了”的低水平上。解题能力是在反思中提升的。懂、会、悟是数学水平的三个层次。简单说,听懂了,但不一定会,更不意味着真正领悟了。

送上六把“金钥匙”,开启你的智慧之门—请对着错题,思考、回答以下问题:

1.我为什么没想到?(缺漏)

2.做过类似的题吗?(类比)

3.为什么是这样做?(深究)

4.我错在哪?(归因)

5.有何规律、方法?(提升)

6.还有别的方法吗?(发散)

三、克服无谓失分

如何避免审题出错?

原因:看太快。

应对策略:

1.默读法;2.重点字词圈点勾画法;3.审图法。

如何降低计算失误?

表面原因是粗心,其实是计算能力不足。平时对计算不以为然,认为“没有技术含量”。事实上计算也有很多“聪明算法”,如:边化简边计算、宁加勿减、宁乘勿除、小数化分数、找最小最短的设元、放缩法、凑整法、图象法等等计算技巧。

应对策略:

1.不要为了赶时间而跳步计算;

2.宁可笔算,少用口算,更不要再抱着计算器;

3.对平时易算错的题型,可以验算一遍。

四、关注几个重点问题

1.新定义题型、非常规题型、存在性问题。

2.分析法—执果索因,逆向思维,倒过来想,假设存在;不完全归纳法—根据例子,大胆猜想、努力验证。反例排除法、特殊图形(特殊位置、极端值)探究法等。

提高数学成绩常用方法

1、预习

预期常常由于 “没时间,看不懂,不必要”等等原因被忽略。实际上预习是学习的必要过程,更是提高自学能力的好方法。

2、学会听课

听分析、听思路、听应用,关键内容一字不漏,注意记录。

3、做好错题本

每个会学习的学生都会有错题本。调查发现那些没有错题本,或者是只做不用的同学,学习效果都不好。

4、用好课外书

正确认识网络课程和课外书籍,是副食,是帮助吸收的良药。

5、注重数学思维方法的培养

要注意数学思想和方法的指导,站得高,才能看得远。

Copyright © 2022-2023 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。

返回顶部