【精华】八年级数学说课稿4篇

发布者:青衫磊落 时间:2025-5-30 13:44

【精华】八年级数学说课稿4篇

作为一名无私奉献的老师,编写说课稿是必不可少的,借助说课稿可以有效提高教学效率。那么应当如何写说课稿呢?以下是小编为大家整理的八年级数学说课稿4篇,欢迎阅读,希望大家能够喜欢。

【精华】八年级数学说课稿4篇

八年级数学说课稿 篇1

一、教材分析 :

(一)、本节课在教材中的地位作用

“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。课标要求学生必须掌握。

(二)、教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形

过程与方法:

1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程

2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用

3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

情感态度:

1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系

2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神 (三)、学情分析: 尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。

重点: 勾股定理逆定理的应用 难点: 勾股定理逆定理的证明

关键: 辅助线的添法探索

二、教学过程 :

本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。

(一)、复习回顾: 复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。

(二)、创设问题情境

一开课我就提出了与本节课关系密切、学生用现有的知识可探索却又解决不好的问题,去提示本节课的探究宗旨。(演示)古代埃及人把一根长绳打上等距离的13个结,然后用桩钉如图那样的三角形,便得到一个直角三角形。这是为什么?……。这个问题一出现马上激起学生已有知识与待研究知识的认识冲突,引起了学生的重视,激发了学生的兴趣,因而全身心地投入到学习中来,创造了我要学的气氛,同时也说明了几何知识来源于实践,不失时机地让学生感到数学就在身边。

(三)、学生在教师的指导下尝试解决问题,总结规律(包括难点突破)

因为几何来源于现实生活,对初二学生来说选择适当的时机,让他们从个体实践经验中开始学习,可以提高学习的主动性和参与意识,所以勾股定理的逆定理不是由教师直接给出的,而是让学生通过动手折纸在具体的实践中观察满足条件的三角形直观感觉上是什么三角形,再用直角三角形插入去验证猜想。

这样设计是因为勾股定理逆定理的证明方法是学生第一次见到,它要求按照已知条件作一个直角三角形,根据学生的智能状况学生是不容易想到的,为了突破这个难点,我让学生动手裁出了一个两直角边与所折三角形两条较小边相等的直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。

接下来就是利用这个数学模型,从理论上证明这个定理。从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。使学生确实在学习过程中享受到自我创造的快乐。

在同学们完成证明之后,可让他们对照课本把证明过程严格的阅读一遍,充分发挥教课书的作用,养成学生看书的习惯,这也是在培养学生的`自学能力。

(四)、组织变式训练

本着由浅入深的原则,安排了三个题目。(演示)第一题比较简单,让学生口答,让所有的学生都能完成。第二题则进了一层,字母代替了数字,绕了一个弯,既可以检查本课知识,又可以提高灵活运用以往知识的能力。第三题则要求更高,要求学生能够推出可能的结论,这些作法培养了学生灵活转换、举一反三的能力,发展了学生的思维,提高了课堂教学的效果和利用率。在变式训练中我还采用讲、说、练结合的方法,教师通过观察、提问、巡视、谈话等活动、及时了解学生的学习过程,随时反馈,调节教法,同时注意加强有针对性的个别指导,把发展学生的思维和随时把握学生的学习效果结合起来。

(五)、归纳小结,纳入知识体系

本节课小结先让学生归纳本节知识和技能,然后教师作必要的补充,尤其是注意总结思想方法,培养能力方面,比如辅助线的添法,数形结合的思想,并告诉同学今天的勾股定理逆定理是同学们通过自己亲手实践发现并证明的,这种讨论问题的方法是培养我们发现问题认识问题的好方法,希望同学在课外练习时注意用这种方法,这都是教给学习方法。

(六)、作业布置

由于学生的思维素质存在一定的差异,教学要贯彻“因材施教”的原则,为此我安排了两组作业。A组是基本的思维训练项目,全体都要做,这样有利于学生学习习惯的培养,以及提高他们学好数学的信心。B组题适当加大难度,拓宽知识,供有能力又有兴趣的学生做,日积月累,对训练和培养他们的思维素质,发展学生的个性有积极作用。

三、说教法、学法与教学手段

为贯彻实施素质教育提出的面向全体学生,使学生全面发展主动发展的精神和培养创新活动的要求,根据本节课的教学内容、教学要求以及初二学生的年龄和心理特征以及学生的认知规律和认知水平,本节课我主要采用了以学生为主体,引导发现、操作探究的教学方法,即不违反科学性又符合可接受性原则,这样有利于培养学生的学习兴趣,调动学生的学习积极性,发展学生的思维;有利于培养学生动手、观察、分析、猜想、验证、推理能力和创新能力;有利于学生从感性认识上升到理性认识,加深对所学知识的理解和掌握;有利于突破难点和突出重点。

此外,本节课我还采用了理论联系实际的教学原则,以教师为主导、学生为主体的教学原则,通过联系学生现有的经验和感性认识,由最邻近的知识去向本节课迁移,通过动手操作让学生独立探讨、主动获取知识。

总之,本节课遵循从生动直观到抽象思维的认识规律,力争最大限度地调动学生学习的积极性;力争把教师教的过程转化为学生亲自探索、发现知识的过程;力争使学生在获得知识的过程中得到能力的培养。

八年级数学说课稿 篇2

1.这一节课的设计是建立在学生已有的知识经验基础之上,利用多媒体演示,通过猜测、分组讨论、动手作图等方式帮助学生在探索图形变换和坐标变化之间关系的过程中,获得数学知识。

2.教学过程中注重激励学生的学习热情,注重过程评价,注重发现问题与解决问题评价。鼓励学生动脑、动手、动口,积极交流讨论。

3.通过这节课的学习,学生初步掌握了探究数学问题的'基本方法,了解怎样建立数学模型解决实际问题,学会从生活中去发现数学,去找到数学的美,把数学和生活紧紧联系在一起,让学生体会到数学形象生动的一面。

4.存在问题:由于学生还没有经历过图形相似的学习,对于图形的拉伸和压缩可能有一定的难度。解决办法:让学生充分交流讨论,积极动手去验证,自己得出结论,加深他们对这一知识的理解。

八年级数学说课稿 篇3

各位老师,大家早上好!今天我将要为大家讲的课题是“平均数”,下面我将从以下几个方面进行说明,恳请各位老师和同学批评指正。

一、教材分析

(一)本节内容在全书及章节的地位

本节课是人教版八年级数学下册第20章《数据的分析》中,第一节内容。主要让学生认识数据统计中基本统计量,是一堂概念性较强的课,也是学生学会分析数据,作出决策的基础。本节课的内容与学生生活密切相关,能直接指导学生的生活实践。

(二)教学的目标和要求

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:

知识目标:理解算术平均数、加权平均数的含义,掌握算术平均数、加权平均数的计算方法,明确算术平均数、加权平均数在数据分析中的作用。

能力目标:会计算一组数据的平均数,培养独立思考,勇于创新,小组协作的能力。

情感目标:体验事物的多面性与学会全面分析问题的必要性,渗透诚实、进取观念,培养吃苦创新精神。

(三)教学的重点和难点

本着课程标准,在吃透教材基础上,我觉得本节课的重点是:

教学重点:算术平均数、加权平均数的概念以及其计算和确定方法;

教学难点:平均数的计算,加权平均数的理解和运算。

二、学生分析

1、学生与教材

(1)小学已学过平均数(2)生活接触过平均数

2、学生的特点(心理正处于一个重要的转折时期)

(1)他们一方面好奇心强,爱说爱动、争强好胜、学习的动力多来自兴趣激情,收获多来自“无意注意”。

(2)另一方面,他们的自觉性差、自控能力弱、情绪起伏较大,动力和效果都不稳定。

下面,为了讲清重点、难点,结合学生的心理特征,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

三、教法

数学是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,我主要是以问题的方式启发学生,以生动有趣的实例吸引与激励学生;在整个过程中采用情境教学法。同时,注重培养学生阅读理解能力与小组协作能力,在教学过程中主要以学生“探究思考”“小组讨论”“相互学习”的学习方式而进行。采用了探究式的教学方法,整个探究式学习过程充满了师生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

四、学法

数学作为基础教育学科之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。我采用着重于学生探索研究的启发式教学方法,结合师生共同讨论、归纳。在课堂结构上,根据学生的认知水平,我设计了以下6个成次的学法,①创设情境——引入概念②对比讨论——形成概念③例题讲解——深化概念④即时训练—巩固新知⑤总结反思——提高认识⑥任务后延——自主探究,它们环环相扣,层层深入,从而顺利完成教学目标。接下来,我再具体谈一谈这堂课的教学过程:

五、教学程序及设想

(一)创设情境——引入概念

长期以来,很多学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。

首先由学生的平均成绩、平均年龄引入,复习算术平均数的求法。接着,我将以课本136页的问题一为例,激发学生的学习兴趣。

(二)对比讨论——形成概念

在学生计算出以上问题的平均数后,小组讨论研究,看谁做的对,学生得出自己的见解后,老师提问,然后引导对比分析以上两个问题的'相同点与不同点,从而讨论归纳出加权平均数的概念。

(三)例题讲解——深化概念

接着以所学知识解决一个实际问题,一个很贴近实际的应聘问题,第一问设计很简单,用算术平均数易求,接着出示第二问,给每个数赋上“权”,让学生探讨用刚刚学到的知识解决,学生都有一种跃跃欲试的感觉,这样学生就很容易深化学生对概念的理解。

(四)即时训练——巩固新知

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的讨论研究,真正掌握算术平均数、加权平均数的计算方法,在教师的引导下加深了对新知识的巩固和提高。

(五)总结反思——提高认识

由学生总结本节课所学习的主要内容:⑴算术平均数、加权平均数的概念;⑵算术平均数、加权平均数的计算和确定方法。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质。

(六)任务后延——自主探究

学生经过以上五个环节的学习,已经初步掌握了算术平均数、加权平均数的计算和确定方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,其中包括了必做题和选做题,留给学生课后自主探究,这样既使学生掌握基础知识,又使学有余力的学生有进一步发展的空间和余地,这样也充分反映了新课改的精神,就是让不同的学生在数学上得到不同的发展。

以上是我教学的设计过程。在整个过程中我非常强调的一点是让学生从已有的生活经验出发,把这些生活中的问题抽象成数学的模型,并能加以解释和应用它。

六、简述板书设计。

我将黑板分为了四个板块,左边的一块用以引出概念,中间左边的一块我将书写教学的重点与难点,并用星号加以标注,而剩余两块用以向学生讲解例题。

以上是我说课的所有内容,不足之处,希望各位评委老师提出宝贵意见。谢谢!

八年级数学说课稿 篇4

【环节一】复习回顾,导入新课

1、在本上画一个任意三角形。

2、和同桌交流你前面学习了哪些三角形中的线段?三角形的角有怎样的性质?

设计意图:设计操作活动回顾旧知识,并将操作活动与学生的思维活动、语言表达有机结合,实现数学思考的内化,避免了传统的问答式回顾、参与人数少、顾及不到各层面学生、用时较多等问题。

【环节二】猜想发现

1、三角形内角和是多少度?

2、你能用实验的方法来验证你的猜想吗?

拼图实验,分两步完成。

第一步:我先示范图(1)的拼法,分析拼图,发现三角形内角和;

第二步:每个学生把课前准备好的三角形纸片的'两个内角剪下,和第三个内角拼在一起。学生展示自己的拼法。

在拼角时,如果让学生剪下三角形的内角,学生很可能会把三角形的三个内角都剪下,把这个三角形分成四块,虽然三个角拼在一起构成了平角,但从这种拼法中寻找证明三角形内角和定理的方法有一定难度。于是,我采取了先示范图(1)的拼法(即剪下三角形两个内角的拼在第三个内角的两旁),然后让学生动手操作:剪下两个角,拼在第三个角的一旁。

在本环节中,我还有一点困惑:如果在图(1)把∠B拼在∠A的右边,把∠C拼在∠A的左边;或者在图(2)中把∠B拼在中间,能找到三角形内角和定理的证明方法吗?

【环节三】逻辑证明

从刚才的操作过程中,你能发现证明的思路吗?

小组活动流程:

1.先独立思考;

2.组内交流你的证明思路;

3.选出小组代表发言。

设计意图:第一,通过作平行线“搬两个角”,运用平行线的性质和平角的定义证明。启发学生过△ABC的顶点A作直线∥BC,指导学生写出已知、求证、证明过程,规范证明格式;第二,在证明三角形内角和定理时,可以“搬两个角”来说理。如果只“搬一个角”行吗?

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。