有关数学说课稿范文合集五篇

发布者:兰影残月 时间:2025-7-14 14:46

有关数学说课稿范文合集五篇

作为一名默默奉献的教育工作者,通常需要用到说课稿来辅助教学,说课稿有助于提高教师的语言表达能力。优秀的说课稿都具备一些什么特点呢?以下是小编收集整理的数学说课稿5篇,仅供参考,欢迎大家阅读。

有关数学说课稿范文合集五篇

数学说课稿 篇1

一、说教材

1、教学内容:六年制小学数学第八册P100例1、2。

小数的性质是一节概念教学课,是在学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且它是小数四则计算的基础。根据小数的性质可以把末尾有零的小数化简,也可以不改变小数的大小,把一个数改写成指定位数的小数。

2、教材的重点和难点:

掌握小数性质的含义是教学的重点,理解小数性质归纳的过程是教学的难点。

3、教学目标:

(1)利用知识的迁移规律,让学生在自主探究、合作交流中理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

(2)让学生进一步体验教学与日常生活的密切联系,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,以主动参与数学活动。

(3)在教学中渗透事物是普遍联系和相互转化的辩证唯物主义观点。

二、说教法

1、通过直观、图示,让学生充分感知,经过比较归纳,最后概括出小数的性质;从而使学生的思维从形象思维过渡到抽象思维。

2、采用引探教学法,依据学生认知规律对例题进行加工调整,在探求知识规律处适当给予启发、引导,以调动学生学习的自觉性、积极性,从而达到感知新知,概括新知,应用新知,巩固和深化新知的目的。

三、说学法

通过本节教学,要使学生掌握一些基本的学习方法:

1、学会通过比较、归纳,最后概括出一类事物的本质属性。

2、引导学生自主探究,培养他们用已有知识解决新问题的能力。

3、通过指导独立看书,汇报交流活动,培养学生的自学能力和合作交流的好习惯。

四、说教学程序

(一)情景导入激趣揭题

(课件出示)唐僧师徒一起去西天取经,有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.1米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的.。”说着拿回了注有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位徒弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话,微笑着点了点头。

同学们,你们知道为什么师傅对悟空的话点头微笑呢?这是因为大师兄悟空掌握了小数很重要的性质,学习了这节课,我们就知道其中的奥秘了”。(板书:小数的性质)

这样的设汁,旨在把枯燥的数学知识贯穿在小学生喜闻乐道的故事中,引发起学主的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力。

(二)调整例题探索新知

1、教学例1

(1)出示米尺投影图

(2)引导学生观察米尺图,提问:

A、0.1米是几分之几米(1/10米)?用整数表示就是多少分米?(1分米)

B、0.10O米是几个几分之1米?(10个1/100米)1/100米用整数表示是几厘米(1厘米)?10个1/100米就是多少毫米?(10厘米)

C、0.100米就是几个几分之1米(100个1/1000米)?1/1000米用整数表示是几毫米(1毫米)?那么100个1/1000米就是多少毫米?(100毫米)

结合学生回答,例1图上的标注应改为:

0.1米是1/10米,就是1分米

0.10米是10个1/100米,就是10厘米

0.100米就是10个1/1000米,就是100毫米

因为1分米=10厘米=100毫米

所以0.1米=0.10米=0.100米

这样,学生根据小数的意义,主动从“0.1米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。《数学课程标准)强调:数学活动必须建立在学生的认知发展水平和已有的知识经验基础上,这样教学,也正是使本节课牢牢地扎根于小数意义的基础上,是小数意义的运用,而不是简单的重复,因而是有意义学习。

接着教师指着“0.1米=0.10米=0.100米"这个等式,并标上思考符号“→”,先让学生从左往右观察、比较,提问三个小数0.1、0.10、0.100有什么不同?(小数的位数不同,但在0.1米的末尾添上一个“0”或两个“0”,表示的实际长度不变,板书在小数的末尾添上0,小数的大小不变)。再标出思考箭头“→”,让学生从右往左观察,发现什么规律,补充板书小数的末尾去掉“0”。

这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括事物本质属性的能力。

2、教学例2

在例1的学习过程中,学生已经初步掌握了探求新知的方法。所以例2的教学,教师出示自学提纲,提倡学生先独立看书,然后小组讨论,汇报交流:

(1)左图把1个正方形平均分成几份?阴影分用分数怎样表示?用小数怎样表示?

(2)右图把同样的正方形平均分成几份?阴影部分用分数怎样表示?用小数怎样表示?

(3)从左图到右图有什么变了,什么没变?(份数变了,正方形的大小和阴影面积的大小没变)

(4)怎样比较0.30和0.3的大小?(0.30是30个1/100,0.3是3个1/10,因为10个1/100是1个1/10,30个1/100也就是31/10,所以两个小数的大小相等)。

这样使学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的,同时,通过看书交流,培养了学生的自学能力和合作意识。通过两道例题,让学生进一步掌握规律,全面概括出小数的性质。

3、呼应课始,揭示奥秘:由于悟空掌握了小数的性质,所以他面对两位师弟的争执说:“无论哪一袋都一样”。

4、联系生活,再现新知:还有同学们在商场看到货物的标价为2.50元、3.00元,这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。

(三)巩固深化拓展思维

这是教学中不可缺少的环节,这一阶段是学生巩固知识,形成技能,技巧,发展智力的重要过程。在这一阶段,特别是抓住学生的求胜心理进行了练习、要进一步激发学生的学习兴趣,确保学习任务的圆满完成。

1、判断下面小数哪些0去掉是对的,哪些0去掉是错的?

8.0808.0880.0080.80800

2、判断下面各组两个数是否相等?为什么?

0.25和0.2500、0.25和0.205、0.7和0.07、3和300、3和3.00

3、闭眼听判:

“小数点的末尾添上‘0’或去掉“0’,小数大小不变”这种说法对吗?为什么?

这样设计、让学生对新知识的各种误解进行辨析、判断,使得所学知识真正转化为能力。

(四)全课小结

数学说课稿 篇2

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。

教学目标

1.知识与技能

(1)理解二次根式的概念。

(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0)。

(3)掌握 ? = (a≥0,b≥0), = ? ;

= (a≥0,b>0), = (a≥0,b>0)。

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减。

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算。

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念。利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的。

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。

教学重点

1.二次根式 (a≥0)的内涵。 (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用。

2.二次根式乘除法的规定及其运用。

3.最简二次根式的概念。

4.二次根式的加减运算。

教学难点

1.对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用。

2.二次根式的乘法、除法的条件限制。

3.利用最简二次根式的概念把一个二次根式化成最简二次根式。

教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1 二次根式 3课时

21.2 二次根式的乘法 3课时

21.3 二次根式的加减 3课时

教学活动、习题课、小结 2课时

21.1 二次根式

第一课时

教学内容

二次根式的概念及其运用

教学目标

理解二次根式的概念,并利用 (a≥0)的意义解答具体题目。

提出问题,根据问题给出概念,应用概念解决实际问题。

教学重难点关键

1.重点:形如 (a≥0)的式子叫做二次根式的概念;

2.难点与关键:利用" (a≥0)"解决具体问题。

教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y= ,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x= ,所以所求点的坐标( , )。

问题2:由勾股定理得AB=

问题3:由方差的概念得S= .

二、探索新知

很明显 、 、 ,都是一些正数的算术平方根。像这样一些正数的算术平方根的式子,我们就把它称二次根式。因此,一般地,我们把形如 (a≥0)的式子叫做二次根式," "称为二次根号。

(学生活动)议一议:

1.-1有算术平方根吗?

2.0的`算术平方根是多少?

3.当a<0, 有意义吗?

老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式: 、 、 、 (x>0)、 、 、- 、 、 (x≥0,y≥0)。

分析:二次根式应满足两个条件:第一,有二次根号" ";第二,被开方数是正数或0.

解:二次根式有: 、 (x>0)、 、- 、 (x≥0,y≥0);不是二次根式的有: 、 、 、 .

例2.当x是多少时, 在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0, 才能有意义。

解:由3x-1≥0,得:x≥

当x≥ 时, 在实数范围内有意义。

三、巩固练习

教材P练习1、2、3.

四、应用拓展

例3.当x是多少时, + 在实数范围内有意义?

分析:要使 + 在实数范围内有意义,必须同时满足 中的≥0和 中的x+1≠0.

解:依题意,得

由①得:x≥-

由②得:x≠-1

当x≥- 且x≠-1时, + 在实数范围内有意义。

例4(1)已知y= + +5,求 的值。(答案:2)

(2)若 + =0,求a20xx+b20xx的值。(答案: )

五、归纳小结(学生活动,老师点评)

本节课要掌握:

1.形如 (a≥0)的式子叫做二次根式," "称为二次根号。

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数。

六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计。

3.课后作业:《同步训练》

第一课时作业设计

一、选择题 1.下列式子中,是二次根式的是( )

A.- B. C. D.x

2.下列式子中,不是二次根式的是( )

A. B. C. D.

3.已知一个正方形的面积是5,那么它的边长是( )

A.5 B. C. D.以上皆不对

二、填空题

1.形如________的式子叫做二次根式。

2.面积为a的正方形的边长为________.

3.负数________平方根。

三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

2.当x是多少时, +x2在实数范围内有意义?

3.若 + 有意义,则 =_______.

4.使式子 有意义的未知数x有( )个。

A.0 B.1 C.2 D.无数

5.已知a、b为实数,且 +2 =b+4,求a、b的值。

第一课时作业设计答案:

一、1.A 2.D 3.B

二、1. (a≥0) 2. 3.没有

三、1.设底面边长为x,则0.2x2=1,解答:x= .

2.依题意得: ,

∴当x>- 且x≠0时, +x2在实数范围内没有意义。

3.

4.B

5.a=5,b=-4

21.1 二次根式(2)

第二课时

教学内容

1. (a≥0)是一个非负数;

2.( )2=a(a≥0)。

教学目标

理解 (a≥0)是一个非负数和( )2=a(a≥0),并利用它们进行计算和化简。

通过复习二次根式的概念,用逻辑推理的方法推出 (a≥0)是一个非负数,用具体数据结合算术平方根的意义导出( )2=a(a≥0);最后运用结论严谨解题。

教学重难点关键

1.重点: (a≥0)是一个非负数;( )2=a(a≥0)及其运用。

2.难点、关键:用分类思想的方法导出 (a≥0)是一个非负数;用探究的方法导出( )2=a(a≥0)。

教学过程

一、复习引入

(学生活动)口答

1.什么叫二次根式?

2.当a≥0时, 叫什么?当a<0时, 有意义吗?

老师点评(略)。

二、探究新知

议一议:(学生分组讨论,提问解答)

(a≥0)是一个什么数呢?

老师点评:根据学生讨论和上面的练习,我们可以得出

(a≥0)是一个非负数。

做一做:根据算术平方根的意义填空:

( )2=_______;( )2=_______;( )2=______;( )2=_______;

( )2=______;( )2=_______;( )2=_______.

老师点评: 是4的算术平方根,根据算术平方根的意义, 是一个平方等于4的非负数,因此有( )2=4.

同理可得:( )2=2,( )2=9,( )2=3,( )2= ,( )2= ,( )2=0,所以

( )2=a(a≥0)

例1 计算

1.( )2 2.(3 )2 3.( )2 4.( )2

分析:我们可以直接利用( )2=a(a≥0)的结论解题。

解:( )2 = ,(3 )2 =32?( )2=32?5=45,

( )2= ,( )2= .

三、巩固练习

计算下列各式的值:

( )2 ( )2 ( )2 ( )2 (4 )2

四、应用拓展

例2 计算

1.( )2(x≥0) 2.( )2 3.( )2

4.( )2

分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2≥0.

所以上面的4题都可以运用( )2=a(a≥0)的重要结论解题。

解:(1)因为x≥0,所以x+1>0

( )2=x+1

(2)∵a2≥0,∴( )2=a2

(3)∵a2+2a+1=(a+1)2

又∵(a+1)2≥0,∴a2+2a+1≥0 ,∴ =a2+2a+1

(4)∵4x2-12x+9=(2x)2-2?2x?3+32=(2x-3)2

又∵(2x-3)2≥0

∴4x2-12x+9≥0,∴( )2=4x2-12x+9

例3在实数范围内分解下列因式:

(1)x2-3 (2)x4-4 (3) 2x2-3

分析:(略)

五、归纳小结

本节课应掌握:

1. (a≥0)是一个非负数;

2.( )2=a(a≥0);反之:a=( )2(a≥0)。

六、布置作业

1.教材P8 复习巩固2.(1)、(2) P9 7.

2.选用课时作业设计。

3.课后作业:《同步训练》

第二课时作业设计

一、选择题

1.下列各式中 、 、 、 、 、 ,二次根式的个数是( )。

A.4 B.3 C.2 D.1

2.数a没有算术平方根,则a的取值范围是( )。

A.a>0 B.a≥0 C.a<0 D.a=0

二、填空题

1.(- )2=________.

2.已知 有意义,那么是一个_______数。

三、综合提高题

1.计算

(1)( )2 (2)-( )2 (3)( )2 (4)(-3 )2

(5)

2.把下列非负数写成一个数的平方的形式:

(1)5 (2)3.4 (3) (4)x(x≥0)

3.已知 + =0,求xy的值。

4.在实数范围内分解下列因式:

(1)x2-2 (2)x4-9 3x2-5

第二课时作业设计答案:

一、1.B 2.C

二、1.3 2.非负数

三、1.(1)( )2=9 (2)-( )2=-3 (3)( )2= ×6=

(4)(-3 )2=9× =6 (5)-6

2.(1)5=( )2 (2)3.4=( )2

(3) =( )2 (4)x=( )2(x≥0)

3. xy=34=81

4.(1)x2-2=(x+ )(x- )

(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+ )(x- )

(3)略

21.1 二次根式(3)

第三课时

教学内容

=a(a≥0)

教学目标

理解 =a(a≥0)并利用它进行计算和化简。

通过具体数据的解答,探究 =a(a≥0),并利用这个结论解决具体问题。

教学重难点关键

1.重点: =a(a≥0)。

2.难点:探究结论。

3.关键:讲清a≥0时, =a才成立。

教学过程

一、复习引入

老师口述并板收上两节课的重要内容;

1.形如 (a≥0)的式子叫做二次根式;

2. (a≥0)是一个非负数;

3.( )2=a(a≥0)。

那么,我们猜想当a≥0时, =a是否也成立呢?下面我们就来探究这个问题。

二、探究新知

(学生活动)填空:

=_______; =_______; =______;

=________; =________; =_______.

(老师点评):根据算术平方根的意义,我们可以得到:

=2; =0.01; = ; = ; =0; = .

因此,一般地: =a(a≥0)

例1 化简

(1) (2) (3) (4)

分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,

(4)(-3)2=32,所以都可运用 =a(a≥0)去化简。

解:(1) = =3 (2) = =4

(3) = =5 (4) = =3

三、巩固练习

教材P7练习2.

四、应用拓展

例2 填空:当a≥0时, =_____;当a<0时, =_______,并根据这一性质回答下列问题。

(1)若 =a,则a可以是什么数?

(2)若 =-a,则a可以是什么数?

(3) >a,则a可以是什么数?

分析:∵ =a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使"( )2"中的数是正数,因为,当a≤0时, = ,那么-a≥0.

(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知 =│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.

解:(1)因为 =a,所以a≥0;

(2)因为 =-a,所以a≤0;

(3)因为当a≥0时 =a,要使 >a,即使a>a所以a不存在;当a<0时,>a,即使-a>a,a<0综上,a<0

例3当x>2,化简 - .

分析:(略)

五、归纳小结

本节课应掌握: =a(a≥0)及其运用,同时理解当a<0时, =-a的应用拓展。

六、布置作业

1.教材P8习题21.1 3、4、6、8.

2.选作课时作业设计。

3.课后作业:《同步训练》

第三课时作业设计

一、选择题

1. 的值是( )。

A.0 B. C.4 D.以上都不对

2.a≥0时, 、 、- ,比较它们的结果,下面四个选项中正确的是( )。

A. = ≥- B. > >-

C. < <- d.-=""> =

二、填空题

1.- =________.

2.若 是一个正整数,则正整数m的最小值是________.

三、综合提高题

1.先化简再求值:当a=9时,求a+ 的值,甲乙两人的解答如下:

甲的解答为:原式=a+ =a+(1-a)=1;

乙的解答为:原式=a+ =a+(a-1)=2a-1=17.

两种解答中,_______的解答是错误的,错误的原因是__________.

2.若│1995-a│+ =a,求a-19952的值。

(提示:先由a-20xx≥0,判断1995-a的值是正数还是负数,去掉绝对值)

3. 若-3≤x≤2时,试化简│x-2│+ + .

答案:

一、1.C 2.A

二、1.-0.02 2.5

三、1.甲 甲没有先判定1-a是正数还是负数

2.由已知得a-20xx≥0,a≥20xx

所以a-1995+ =a, =1995,a-20xx=19952,

所以a-19952=20xx.

3. 10-x

21.2 二次根式的乘除

第一课时

教学内容

? = (a≥0,b≥0),反之 = ? (a≥0,b≥0)及其运用。

教学目标

理解 ? = (a≥0,b≥0), = ? (a≥0,b≥0),并利用它们进行计算和化简

由具体数据,发现规律,导出 ? = (a≥0,b≥0)并运用它进行计算;利用逆向思维,得出 = ? (a≥0,b≥0)并运用它进行解题和化简。

教学重难点关键

重点: ? = (a≥0,b≥0), = ? (a≥0,b≥0)及它们的运用。

难点:发现规律,导出 ? = (a≥0,b≥0)。

关键:要讲清 (a<0,b<0)= ,如 = 或 = = × .

教学过程

一、复习引入

(学生活动)请同学们完成下列各题。

1.填空

(1) × =_______, =______;

(2) × =_______, =________.

(3) × =________, =_______.

参考上面的结果,用">、<或="填空。

× _____ , × _____ , × ________

2.利用计算器计算填空

(1) × ______ ,(2) × ______ ,

(3) × ______ ,(4) × ______ ,

(5) × ______ .

老师点评(纠正学生练习中的错误)

二、探索新知

(学生活动)让3、4个同学上台总结规律。

老师点评:(1)被开方数都是正数;

(2)两个二次根式的乘除等于一个二次根式,并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数。

一般地,对二次根式的乘法规定为

? = .(a≥0,b≥0)

反过来: = ? (a≥0,b≥0)

例1.计算

(1) × (2) × (3) × (4) ×

分析:直接利用 ? = (a≥0,b≥0)计算即可。

解:(1) × =

(2) × = =

(3) × = =9

(4) × = =

例2 化简

(1) (2) (3)

(4) (5)

分析:利用 = ? (a≥0,b≥0)直接化简即可。

解:(1) = × =3×4=12

(2) = × =4×9=36

(3) = × =9×10=90

(4) = × = × × =3xy

(5) = = × =3

三、巩固练习

(1)计算(学生练习,老师点评)

① × ②3 ×2 ③ ?

(2) 化简: ; ; ; ;

教材P11练习全部

四、应用拓展

例3.判断下列各式是否正确,不正确的请予以改正:

(1)

(2) × =4× × =4 × =4 =8

解:(1)不正确。

改正: = = × =2×3=6

(2)不正确。

改正: × = × = = = =4

五、归纳小结

本节课应掌握:(1) ? = =(a≥0,b≥0), = ? (a≥0,b≥0)及其运用。

六、布置作业

1.课本P15 1,4,5,6.(1)(2)。

2.选用课时作业设计。

3.课后作业:《同步训练》

第一课时作业设计

一、选择题

1.若直角三角形两条直角边的边长分别为 cm和 cm,那么此直角三角形斜边长是( )。

A.3 cm B.3 cm C.9cm D.27cm

2.化简a 的结果是( )。

A. B. C.- D.-

3.等式 成立的条件是( )

A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1

4.下列各等式成立的是( )。

A.4 ×2 =8 B.5 ×4 =20

C.4 ×3 =7 D.5 ×4 =20

二、填空题

1. =_______.

2.自由落体的公式为S= gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.

三、综合提高题

1.一个底面为30cm×30cm长方体玻璃容器中装满水,现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?

2.探究过程:观察下列各式及其验证过程。

(1)2 =

验证:2 = × = =

= =

(2)3 =

验证:3 = × = =

= =

同理可得:4

5 ,……

通过上述探究你能猜测出: a =_______(a>0),并验证你的结论。

答案:

一、1.B 2.C 3.A 4.D

二、1.13 2.12s

三、1.设:底面正方形铁桶的底面边长为x,

则x2×10=30×30×20,x2=30×30×2,

x= × =30 .

2. a =

验证:a =

= = = .

21.2 二次根式的乘除

第二课时

教学内容

= (a≥0,b>0),反过来 = (a≥0,b>0)及利用它们进行计算和化简。

教学目标

理解 = (a≥0,b>0)和 = (a≥0,b>0)及利用它们进行运算。

利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简。

教学重难点关键

1.重点:理解 = (a≥0,b>0), = (a≥0,b>0)及利用它们进行计算和化简。

2.难点关键:发现规律,归纳出二次根式的除法规定。

教学过程

一、复习引入

(学生活动)请同学们完成下列各题:

1.写出二次根式的乘法规定及逆向等式。

2.填空

(1) =________, =_________;

(2) =________, =________;

(3) =________, =_________;

(4) =________, =________.

规律: ______ ; ______ ; _______ ;

_______ .

3.利用计算器计算填空:

(1) =_________,(2) =_________,(3) =______,(4) =________.

规律: ______ ; _______ ; _____ ; _____ .

每组推荐一名学生上台阐述运算结果。

(老师点评)

二、探索新知

刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:

一般地,对二次根式的除法规定:

= (a≥0,b>0),

反过来, = (a≥0,b>0)

下面我们利用这个规定来计算和化简一些题目。

例1.计算:(1) (2) (3) (4)

分析:上面4小题利用 = (a≥0,b>0)便可直接得出答案。

解:(1) = = =2

(2) = = ×=2

(3) = = =2

(4) = = =2

例2.化简:

(1) (2) (3) (4)

分析:直接利用 = (a≥0,b>0)就可以达到化简之目的。

解:(1) =

(2) =

(3) =

(4) =

三、巩固练习

教材P14 练习1.

四、应用拓展

例3.已知 ,且x为偶数,求(1+x) 的值。

分析:式子 = ,只有a≥0,b>0时才能成立。

因此得到9-x≥0且x-6>0,即6

解:由题意得 ,即

∴6

∵x为偶数

∴x=8

∴原式=(1+x)

=(1+x)

=(1+x) =

∴当x=8时,原式的值= =6.

五、归纳小结

本节课要掌握 = (a≥0,b>0)和 = (a≥0,b>0)及其运用。

六、布置作业

1.教材P15 习题21.2 2、7、8、9.

2.选用课时作业设计。

3.课后作业:《同步训练》

第二课时作业设计

一、选择题

1.计算 的结果是( )。

A. B. C. D.

2.阅读下列运算过程:

,

数学上将这种把分母的根号去掉的过程称作"分母有理化",那么,化简 的结果是( )。

A.2 B.6 C. D.

二、填空题

1.分母有理化:(1) =_________;(2) =________;(3) =______.

2.已知x=3,y=4,z=5,那么 的最后结果是_______.

三、综合提高题

1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为 :1,现用直径为3 cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?

2.计算

(1) ?(- )÷ (m>0,n>0)

(2)-3 ÷( )× (a>0)

答案:

一、1.A 2.C

二、1.(1) ;(2) ;(3)

2.

三、1.设:矩形房梁的宽为x(cm),则长为 xcm,依题意,

得:( x)2+x2=(3 )2,

4x2=9×15,x= (cm),

x?x= x2= (cm2)。

2.(1)原式=- ÷ =-

=- =-

(2)原式=-2 =-2 =- a

21.2 二次根式的乘除(3)

第三课时

教学内容

最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算。

教学目标

理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式。

通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求。

重难点关键

1.重点:最简二次根式的运用。

2.难点关键:会判断这个二次根式是否是最简二次根式。

教学过程

一、复习引入

(学生活动)请同学们完成下列各题(请三位同学上台板书)

1.计算(1) ,(2) ,(3)

老师点评: = , = , =

2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_________.

它们的比是 .

二、探索新知

观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:

1.被开方数不含分母;

2.被开方数中不含能开得尽方的因数或因式。

我们把满足上述两个条件的二次根式,叫做最简二次根式。

那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式。

学生分组讨论,推荐3~4个人到黑板上板书。

老师点评:不是。

= .

例1.(1) ; (2) ; (3)

例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长。

解:因为AB2=AC2+BC2

所以AB= = =6.5(cm)

因此AB的长为6.5cm.

三、巩固练习

教材P14 练习2、3

四、应用拓展

例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:

= = -1,

= = - ,

同理可得: = - ,……

从计算结果中找出规律,并利用这一规律计算

( + + +…… )( +1)的值。

分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的。

解:原式=( -1+ - + - +……+ - )×( +1)

=( -1)( +1)

=20xx-1=20xx

五、归纳小结

本节课应掌握:最简二次根式的概念及其运用。

六、布置作业

1.教材P15 习题21.2 3、7、10.

2.选用课时作业设计。

3.课后作业:《同步训练》

第三课时作业设计

一、选择题

1.如果 (y>0)是二次根式,那么,化为最简二次根式是( )。

A. (y>0) B. (y>0) C. (y>0) D.以上都不对

2.把(a-1) 中根号外的(a-1)移入根号内得( )。

A. B. C.- D.-

3.在下列各式中,化简正确的是( )

A. =3 B. =±

C. =a2 D. =x

4.化简 的结果是( )

A.- B.- C.- D.-

二、填空题

1.化简 =_________.(x≥0)

2.a 化简二次根式号后的结果是_________.

三、综合提高题

1.已知a为实数,化简: -a ,阅读下面的解答过程,请判断是否正确?若不正确,请写出正确的解答过程:

解: -a =a -a? =(a-1)

2.若x、y为实数,且y= ,求 的值。

答案:

一、1.C 2.D 3.C 4.C

二、1.x 2.-

三、1.不正确,正确解答:

因为 ,所以a<0,

原式= -a? = ? -a? =-a + =(1-a)

2.∵ ∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=

数学说课稿 篇3

一、教学目标的设立和教学重难点的确立:

根据新课程标准的目标之一:"要使学生具有初步的创新精神和实能力,在情感态度和一般能力方面都能得到充分发展。"在教学设计上,通过创设的丰富背景,激发学生的学习兴趣和探求欲望,引导学生积极参与和主动探索,并在课堂中积累学习经验,发展有条理的思考。一篇文章有它的中心思想,一部电视剧有它的主题歌。教学目标的设立和教学难点的确立正是一堂课的"中心"与"主题"。我是这样安排的:

课程目标:了解频率分布的意义,会得出一组数据的频率分布。

能力目标:

1、在教学中培养学生整理一组数据的能力。

2、会列频率分布表和会画频率分布直方图。

3、会利用频率分布有关知识解决实际问题。

情感目标:教学中渗透"德育","美育"等思想教育。

教学重点:使学生会通过整理一组数据来列频率分布表和画频率分布直方图。

教学难点:

1、正确而简便地确定画频率分布直方图时每个长方形的高。

2、会活用频率分布的有关知识解决实际问题。

二、结合教案和课件阐述这堂课的教学设计与思路。

(一)复习设计与导入:

首先通过两个复习题的练习复习旧知识,达到温故而知新的目的。然后出示课本第180页的引例。让学生明白:这组数据的平均数反映了这些学生的平均身高。只知道这一点还不够,有时还希望知识在哪个"小范围"内的学生多,哪个小范围内的学生少如何知道呢,今天我们学习了频率分布的有关知识,不难得到答案。这就是这节课的导入。象这样可消除学生接触新知识的突然性和盲目性。又使学生明白了学习目的和学习频率分布的`意义。使学生在理性上得到充分的认识。更激发了学生学习这一知识的欲望。同时抓住"小范围"这一关键词,使学生明白首先应对数据进行分组。这样,为后来的教学埋下了伏笔。在这时板书课题进入新课恰到好处。

(二)新课讲解设计与思路。

教学"得到一组数据的频率分布"的五个步骤是这节课的重点。前3个步骤是对一组数据进行分组。让学生明白:计算最大值与最小值的差是分组的准备阶段,决定组距和组数是分组的进行阶段,决定分点是分组的完成阶段。后的第四,五步教学的重中之重。列频率分由表具有可操作性,在教学中引导学生进行大胆操作与实践,同时在操作过程中让学生理解"频数,频率,频率分布表"这些概念。而频率分布直方图具有直观形象性。因此在教学中通过多媒体课件的演示,使其这一特点得到充分的展示。同时使学生达到"眼到,耳到,口到,手到,心更到",使学生的各种感观得到充分锻炼。这一知识点中"小长方形和高的确定"是教学的难点之一。主要有两种方法:一种是根据频率确定小长方形的高,一种是根据频数确定小长形的高。不仅要让学生知道,这应让学生明白其来龙去脉。同时强调两个值得注意的问题。使这一难点得到突破。最后对以上五个步骤进行方法小结。小结的目的在于使学生明确前三步是对数据进行分组,后两步是进行频率分布统计。使学生明白频率分布表从数值上比较具体反映数据的频率分布,而后者则比较形象直观。更突出了这节课的教学重点。

(三)练习与作业设计

通过课堂练习,使学生会利用频率分布的有关知识解决实际问题,使本节课的第二个难点得到突破。设计的练习有课本第189页习题第1题,第187页练习第1题和形形色色的直方图。特别是形形色色的直方图中的三个题(20xx年辽宁省中考题,20xx年徐州市中考题,20xx年济南市中考题)。这些题更能体现运用频率分布有关知识解决实际问题。20xx年辽宁省中考题的纵轴是频数。20xx年度徐州市中考题在纵轴上标明了的具体数值,算频率时一定要乘以组距2,学生很容易忽视。而20xx年济南中考题中的小长方形是横放着的,而且反映的是百分比。这此题都是课本中例题的变式。同时使学生明白这三道中考题要注意小长形的高的表示的是什么有的是,有的是频数,有的是频数与数据总数的百分比,有的是频率等等。直方图中的小长形有的是竖着放的,有的是横着放的。另外,本节课的课堂作业是课本第189页的第2,3题。学生通过课堂作业的练习,把学到的知识进行巩固,反馈给教师。

(四)课堂小结与板书设计:

课堂小结:

板书设计:

三,教法选择与学法指导:

针对初三学生的年龄特点和心理特征,以及他们的认知水平,采用诱导式教学方法,师生互动,鼓励学生团结协作,大胆动手操作,以观察,实验,整理,分析,归纳为主,在形象的背景下进行教学。

本节课的教学设计注重引导,培养学生的各种思维品质与思维能力。本节课在"发散"的同时注重了"聚"。一是在教学进行数据频率分布的五个步骤时,进行了"聚"(方法小结);二是在进行"形形色色的直方图"练习时进行了"聚";三是课堂练习之后的小结更是注重了"聚",让学生明白:生活是美好的,数学来源于生活,用数学知识可以解决生活中的很多实际问题。"聚"的好处在于有助于为学生总结解题方法与规律,学习经验,更有助于学生理解知识的实质,使学生形成良好的思维模式。另外,在探索与实践过程中还培养了学生分析问题,解决问题的能力和良好的口头表达能力。因此,在课堂上主要采取积极引导,主动参与,合作交流的方法来组织教学,使学生真正成为教学的主体,体会成功的喜悦,感知数学的奇妙。培养出具有高素质的祖国的下一代。

四,教学辅助手段的使用

本节课使用了多媒体辅助教学。克服了传统教学容量小的缺点,使教学内容更充实;精美的文字,图形使课程内容更形象直观;美妙逼真的声音是教学过程更富有生机。教学辅助手段的使用有利于吸引学生的注意力,更能激发学生学习的兴趣与探索数学知识的热情。

数学说课稿 篇4

一、本课时在教材中的地位及作用

教材采用北师大版(数学)必修1,函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。本章节9个课时,函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节课《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据

二、教学目标

理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

三、重难点分析确定

根据上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

四、教学基本思路及过程

本节课《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。

⑴学情分析

一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度,加上学生数学基础较差,理解能力,运算能力等参差不齐等。

⑵教法、学法

1、本节课采用的方法有:

直观教学法、启发教学法、课堂讨论法。

2、采用这些方法的理论依据:我一方面精心设计问题情景,引导学生主动探索,另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程,充分体现“教师为主导,学生为主体”的教学原则。

3、学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

⑶教学过程

(一)创设情景,引入新课

情景1:提供一张表格,把本班中考得分前10名的情况填入表格,

我报名次,学生提供分数。

情景2:西康高速汽车的行驶速度为80千米/小时,汽车行驶的距离

y与行驶时间x之间的关系式为:y=80x

情景3:安康市一天24小时内的气温随时间变化图:(图略)

提问(1):这三个例子中都涉及到了几个变化的量?(两个)

提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的

值也随之唯一确定)

提问(3):这样的关系在初中称之为什么?(函数)引出课题

[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。第一个例子我改成提供给学生一张中考成绩统计单。是为了创设和学生生活相近的情境,从而引起学生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。

这样学生可以从熟悉的情景引入,提高学生的参与程度。符合学生的认知特点。

(二)探索新知,形成概念

1、引导分析,探求特征

思考:如何用集合的语言来阐述上述三个问题的共同特征?

[设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。这里也是教师作为教学的引导者的体现,及时对学生进行指引。

提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)

[设计意图]引导学生观察,培养观察问题,分析问题的能力。

提问(5):两个集合的元素之间具有怎样的关系?(对应)

及时给出单值对应的`定义,并尝试用输入值,输出值的概念来表达这种对应。

2、抽象归纳,引出概念

提问(6):现在你能从集合角度说说这三个问题的共同点吗?

[设计意图]学生相互讨论,并回答,引出函数的概念。训练学生的归纳能力。

板书:函数的概念

上述一系列问题,始终倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。

3、探求定义,提出注意

提问(7):你觉得这个定义中应注意哪些问题(两个非空数集,唯一对应等)?

[设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。

2、例题剖析,强化概念

例1、判断下列对应是否为函数:

(1)

(2)

[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。

例2、(1);

(2)y=x—1;

(3);

(4)

[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。

例3、试求下列函数的定义域与值域:

(1)

(2)

[设计意图]让学体会理解函数的三要素:定义域、值域、对应法则。

4、巩固练习,运用概念

书本练习P25:练习1,2,3。P28:练习1,2

布置作业:A组:1、2。B组1。

5、课堂小结,提升思想

引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。

6、板书设计:借助小黑板,时间的合理分配等(略)

五、教学评价及反思

我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破,教学时间分配合理,为使课堂形式更加丰富,也可将某些问题改成判断题。在学生分析、归纳、建构概念的过程中,可能会出现理解的偏差,教师应给予恰当的梳理。

本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景(结合各学校的硬件条件)。

数学说课稿 篇5

桑老师老师的一堂《和差倍角的三角函数》的公开课,给人以耳目一新的感觉,整堂课以“生”为“师”方式教学方式展开,在师生互动,生生互动中从课堂预设到动态形成。一环扣一环,学生活动高潮迭起,教师引导巧而得法,获得了听课老师的一致好评。

一、课堂教学设计理念新

以学生的发展为根本,运用以“生”为“师”方式引导学生积极参与教学活动,在整个过程中实现师生,生生互动,活动内容丰富多彩,接近学生生活,在互动,交流,合作,探究中实施教学。整个过程中教师的角色起了深刻的变化,真正成了组织者,参与者,引导者,帮助者,关注学生学习策略,学习方法,学习态度,成为名副其实的"以学为本"的教学设计。以新的'课改理念来指导自己的教学行为,以自己的教学行为来诠释自己的教学思想。

二、体现了新课程"三维目标"

桑老师在教学过程中处理好"知识与技能;过程与方法;情感态度与价值观之间的关系。"①不是教书本,而是以书本教,以学生现有的知识经验导入,学生兴趣浓,由学习课本的语言知识输入到延伸过程中的语言知识输出,通过教师引导使学生运用语言知识,学会交际,学会做事情。例:角的变换、降幂公式逆用、条件中角范围的改变,整个教学过程中,以学生为主体,注重在教学过程中加强对学生学习方法的培养,学习策略的渗透,情感的培养,真正朝着"学生发展"方向努力。③重视情感态度与价值观的培养。教学过程中培养学生的团队合作精神,积极调动不同层次学生积极学习,自主学习,积极评价,激发持续的学习热情,不断使学生体验成功,提高学生的自我价值,也注意了个性的培养。把学生热情也很好的调动起来,一下子就把师生之间的关系拉近了,形成良好的开端,而且这种热情教师能带入每个教学环节,使课堂气氛变得较为轻松!

三、课堂教学追求实效性

教师能够有效地组织和引导学生开展以探究为特征的研究性学习,使接受与探究相辅相成,学生的学习境界更高,学习效果更好,并且这种务实精神贯穿始终,朴实的语言,精准的点拨,适时的启发,大胆的放手,甚至还有一点点放纵……无不体现的淋漓尽致。公开课很容易上成作秀课,就像电视上“才艺表演”“舞林大会”等同时老师也很喜欢成为调情高手,总想充分调动学生的情绪,把课堂气氛弄得活跃而热烈。不能说这不好,但数学是一门需要静思的学科,闹哄哄的课堂势必会影响学生思维的深度和质量,桑老师并不追求这些虚假的繁荣,一直将“追求实效”进行到底。

Copyright © 2022-2024 领地网 www.lingd.cn 版权所有 蜀ICP备09043158号-4

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。